genestboost.loss_functions package¶
genestboost.loss_functions module.
-
class
genestboost.loss_functions.AbsoluteLoss[source]¶ Bases:
genestboost.loss_functions.base_class.BaseLossAbsolute loss function class.
-
class
genestboost.loss_functions.BetaLoss(alpha, beta, eps=1e-10)[source]¶ Bases:
genestboost.loss_functions.base_class.BaseLossBetaLoss class implementation.
-
__init__(alpha, beta, eps=1e-10)[source]¶ Class initializer.
Extends BaseLoss.__init__.
- Parameters
alpha (float) – Value of alpha in beta loss denominator, mu ** (1 - alpha)
beta (float) – Value of beta in beta loss denominator, (1 - mu) ** (1 - beta)
eps (float) – Small value to use in log calculations to avoid numerical error
-
static
beta_callback(alpha, beta, eps=1e-10)[source]¶ Compute the beta callback function for quasi-deviance.
- Parameters
alpha (float) – Value of alpha in beta loss denominator, mu ** (1 - alpha)
beta (float) – Value of beta in beta loss denominator, (1 - mu) ** (1 - beta)
eps (float) – Small value to use in log calculations to avoid numerical error
- Returns
A callable that takes an np.ndarray and returns an np.ndarray after calculating the beta quasi-deviance denominator
- Return type
callable
-
-
class
genestboost.loss_functions.LeakyBetaLoss(alpha, beta, gamma=1.0, eps=1e-10, xtol=1e-08)[source]¶ Bases:
genestboost.loss_functions.beta_loss.BetaLossClass implementation of LeakyBetaLoss loss function.
-
__init__(alpha, beta, gamma=1.0, eps=1e-10, xtol=1e-08)[source]¶ Class initializer.
Extends BetaLoss.__init__.
- Parameters
alpha (float) – Passed as the alpha argument to the BetaLoss initializer
beta (float) – Passed as the beta argument to the BetaLoss initializer
eps (float, optional) – Passed as the eps argument to the BetaLoss initializer (the default value is 1e-10)
gamma (float, optional) – A float in the range (0.0, 1.0] specifying … (the default value is 1.0)
xtol (float, optional) – Passed as the xtol argument to scipy.optimize.bisect (the default value is 1e-8)
-
-
class
genestboost.loss_functions.LeastSquaresLoss[source]¶ Bases:
genestboost.loss_functions.base_class.BaseLossLeast squares loss function class.
-
class
genestboost.loss_functions.LogCoshLoss[source]¶ Bases:
genestboost.loss_functions.base_class.BaseLossLog cosh loss function class.
-
class
genestboost.loss_functions.LogLoss(eps=1e-12)[source]¶ Bases:
genestboost.loss_functions.base_class.BaseLossLog loss function class.
-
__init__(eps=1e-12)[source]¶ Class initializer.
Extends the BaseLoss class intializer.
- eps: float (default = 1e-10)
A small constant float to prevent log from returning negative infinity.
-
-
class
genestboost.loss_functions.PoissonLoss[source]¶ Bases:
genestboost.loss_functions.base_class.BaseLossPoisson loss function class.
-
class
genestboost.loss_functions.QuantileLoss(p)[source]¶ Bases:
genestboost.loss_functions.base_class.BaseLossQuantile regression loss function class.
-
__init__(p)[source]¶ Class initializer.
Extends BaseLoss.__init__.
- Parameters
p (float) – Value in the interval (0, 1) representing the quantile to regress on.
-
-
class
genestboost.loss_functions.QuasiLogLoss(vt_callback, d0_n=100, d2_eps=1e-12)[source]¶ Bases:
genestboost.loss_functions.base_class.BaseLossQuasiLogLoss loss function class.
-
__init__(vt_callback, d0_n=100, d2_eps=1e-12)[source]¶ Class initializer.
Extends BaseLoss.__init__.
- Parameters
vt_callback (callable(yp) -> np.ndarray) – Callable that takes the predicted value and calculates the denominator of the quasilog loss integral for each observation.
d0_n (int) – The number of points to use for integration.
d2_eps (float) – A small float used to calculate the second derivative via the central difference formula - 2*d2_eps the interval used to calculate the derivative from first derivative values.
-
-
class
genestboost.loss_functions.StudentTLoss(scale=None, dof=2)[source]¶ Bases:
genestboost.loss_functions.base_class.BaseLossStudent’s t loss function class.
-
__init__(scale=None, dof=2)[source]¶ Class initializer.
Extends BaseLoss.__init__.
- Parameters
scale (float, optional (default=None)) – The scale of the Student’s t distribution to use. If set to None, the default, then taken as (dof + 1.0) / 2.0.
dof (int) – The number of degrees of freedom for the Student’s t distribution to use.
-